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Abstract. The similarity equations for mixed-convection axisymmetric boundary-layer flow are considered.
The equations involve a buoyancy parameter a and a curvature parameter P. The equations are solved numerically
and it is found that for large a, and P of 0(1), an asymptotic solution is approached, the nature of which is
discussed. When B is also large, of O(al/4), the problem, at leading order, becomes independent of the mainstream
and the free-convection limit is obtained. This problem is also discussed, including the behaviour for large
values of P, the free-convection curvature parameter. For a < 0 we find that the solution can be continued past
the point where the wall heat transfer becomes zero (where previous mixed-convection similarity solutions in plane
geometry were terminated) with the solution ending as a O- 0. The nature of this limit is also discussed.
For a < 0 it is also found that there are solutions only in ab, a < 0 with two branches of solution bifurcating
out of a = a,, and values of ab are computed for a range of a. The behaviour of the solution for large values of
the curvature parameter P, and a of 0(1), is discussed where it is shown that the solution proceeds in inverse powers
of log P.

1. Introduction

The problem of similarity solutions in mixed-convection boundary-layer flow in two-
dimensional geometry was treated first by Cohen and Reshotko [1]. This work was later
extended by Wilks and Bramley [2] who showed the existence of dual solutions, the bifur-
cation point of which was found to be distinct from the point of vanishing skin friction. They
also examined numerically the eigenvalue problem arising out of a stability analysis of these
solutions. Mixed-convection boundary-layer flows in axisymmetric geometries have received
little attention so far. The problem of mixed-convection boundary-layer flow of a uniform
stream past an isothermal vertical circular cylinder has been discussed by Mahmood and
Merkin [3] for both cases when the buoyancy forces aid and oppose the development of the
boundary layer. For axial incompressible boundary-layer flow on a circular cylinder,
Stewartson [4] showed that a similarity solution was possible if the main stream U(x) was
of the form U = Ux/l, though he did not go on to discuss the solution of the resulting
equation.

In this paper we consider the possible form of mainstream and cylinder temperature for
which, in a fluid at constant ambient temperature To, the axisymmetric boundary-layer
equations can be reduced to similarity form. This again requires that we take a main stream
of the form U(x) = Ux/l and that the temperature on the cylinder T have the form
T = To + (x/l)AT. These similarity equations involve both the buoyancy parameter
a = gILAT/Uo2 and the curvature parameter P = (vlU-'a-2)/ 2, where a is the radius of the
cylinder. With # = 0, the equations reduce to one of a class of equations discussed in [1, 2],
and with ce = 0 the momentum equation becomes the equation given in [3].
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We begin by considering the case a > 0 (aiding flow) and solve the resulting equations
numerically for a range of values of P. We then go on to obtain an asymptotic solution for
a > 1 and fB of 0(1). From this solution it then appears that for the curvature effects to be
important at leading order when a is large, must be of O(c'/4). We then take Bf to be of the
form /3 = oa'l4 and let - o. With this choice of scaling for , the problem becomes
independent of the free stream depending only on the applied temperature difference, and
so the resulting equations at leading order can be regarded as the free-convection limit of the
mixed-convection problem. We solve this problem numerically for a range of 0o and examine
the behaviour of the solution for P0 large.

For the opposing case, a < 0, we find that, as with the case P = 0, [2], there is only a finite
range of a, b < < 0 (say) for which a solution is possible. Two branches of solutions
bifurcate out of a = b (the value of ab depends on the value of the parameter P) with the
upper branch continuing the solution into c > 0. However, we find that the lower branch
of solutions can be continued past the point of zero heat transfer from the cylinder, which
was where the solutions given by [2] ended, and that this lower branch terminates as - 0-.
We then obtained the asymptotic behaviour of this lower branch as - 0-. The effect of
increasing B is then found to reduce the value of o at which the skin friction vanishes though
the basic overall structure of the solutions remains the same; there still being two branches
of solution and with the lower branch terminating as a - 0-.

Finally we consider the case of large curvature, with a of 0(1). Here we find the solution
develops a logarithmic singularity at the wall, with the solution proceeding in inverse powers
of log B, and has some similarities with the asymptotic solution for the flow of a uniform
stream over a circular cylinder as discussed by Stewartson [4] and Glauert and Lighthill [6].

2. Equations

The equations governing axisymmetric mixed-convection boundary-layer flow with main-
stream U(x) in fluid at constant ambient temperature To are

a a = (1)
a (ru) + a (rw) = 0, (1)

au Au dU a2u 1 auu + w - = x + g / (T - To) 7 +
v

- (2)ax ar r] T

aT aT v I 2T 1 T\
U ax + = P 0r2 + r r 

where the coordinates x and r measure distance along the surface and normal to it respect-
ively. The boundary conditions to be applied are

AT
u = = 0, T = T+ T on r = a;

U0xu T-4 To as r-- oo; (4)
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u, w are velocity components in the x and r directions respectively and T is the temperature
of the fluid in the boundary layer, P is the coefficient of thermal expansion, g is acceleration
due to gravity, v is the kinematic viscosity and Pr the Prandtl number.

With this choice of mainstream and cylinder temperature, equations (1)-(3) can be reduced
to similarity form by putting

= vx ( f(t), T - T = T

r2 - a2 vl 1/2 (5)

2v1 u 0 a2 J 

where qk is the stream function defined so that u = r-'aq/ar and w = -r-' O/ax. Equation
(1) is then automatically satisfied and equations (2) and (3) become

(1 + 2 1)f'" + 2f" + ff" + 1 - f' 2 + a = 0, (6a)

(1 + 2)0" + 20' + Pr(fO' - f'O) = 0, (6b)

together with the boundary conditions

f(o) = f'(0) = 0, (0) = 1;

(7)
f'- 1, 0 0 as ? - oo

(primes denote differentiation with respect to i/).
Here = glATI/Uo2 is the buoyancy parameter (the ratio of free to forced convection

velocity scales) and /3 = (vlUCo a-2 ) /2 is the curvature parameter.
When the curvature parameter = 0, equations (6) reduce to

f" + ff" + 1 _ f' 2 + O = 0,

(8)Pr-1 0" +fO' -f' = 0,

together with boundary conditions (7). Equations (8) are one of a class of two-dimensional
mixed-convection similarity equations discussed by Cohen and Reshotko [1] and Wilks and
Bramley [2]. With = 0, equation (6a) was given by Stewartson [3] though its solution was
not discussed in any detail.

The purpose of this paper is to discuss the solution of equations (6) together with
boundary conditions (7) over the range of values of the parameters cc and /3. Throughout
results will be given for Pr = 1, though the methods presented will apply generally. We begin
by considering the case a > 0 (aiding flow).

75



76 T. Mahmood and J.H. Merkin

3. Aiding case, a > 0

Equations (6) were solved numerically for a range of a > 0. Graphs off"(0) and 8'(0) are
shown in Figs. (la) and (Ib) respectively for PB = I and P = 5 and compared with the values
for P = 0. We can see from these figures that the curves for P = 1 and /3 = 5 have the same
general shape as that for /3 = 0, with the effect of increasing the curvature being, for a given
value of a, to increase the skin friction f"(O) and the heat transfer - O'(0) on the cylinder.

To discuss the behaviour of the solution for > 1, we put

f = a/4F, = /4~!.

8

6

4

2

0

(9)

0 3

Fig. la. Graphs off'(O) a-3/4 for f = 0,

0I
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a

1 and 5 (the asymptotic value is shown by the broken line).

a

Fig. lb. Graphs of 0'(0) a-1/4 for P = 0, 1 and 5 (the asymptotic value is shown by the broken line).
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Then with F = F(C) and 0 = 0(C), equations (6) become

F"' + FF" - F'2 + 0 + 2fia-l/4 (F"' + F") + -l = 0, (10a)

0" + FO' - F'O + 2fBa-1/4(0" + 0') = 0 (10b)

(primes now denote differentiation with respect to ).
The boundary conditions on = 0 are given by (7), with the outer boundary conditions

becoming

F' -+ a-1 / 2 , 0- 0 as - oo. (11)

Equations (10) show that, if f is of 0(1), the curvature effects are small, being of O(a-1/4)
and (11) shows that forced-convection effects are also small, being of O(a-/2) so that, at
leading order we obtain the free-convection flat-plate solution. Equations (10) and (11)
suggest an expansion for F and 0 in the form

F = Fo + x-1/4PF + -1/2 (B 2F2 + 42) + . .

0 = 00 + oa-/4,f0 + -'/2 (f 2 0 2 + h2) + . . . . (12)

Fo and 00 satisfy the equations

F + FoF" -F2 + 0o = 0,

(13a)
og + FO - FO00 = 0,3a

with boundary conditions

Fo(O) = F(O) = 0, 0o(0) = 1;

(13b)
Fo' -0, 00 0 as -+- oo.

The equations for the higher-order terms in expansions (12) are all linear, with, at O(Ca-/2),
the , 2F2 and 202 terms being associated with the curvature effects, and the terms 02 and h2
being associated with the forced-convection effects. We find, from solving the resulting
equations numerically that for a 1,

L(d f' )= 03/4[0.73950 + 0.13462pBo-1/4 + (0.01989 - 0.04733# 2)a- / 2 + . . ],

(d = - a/ 4 [-0.59509 + 0.47007Lo-1/4 + (0.04215 - 0.15867 2)-" 2 ... ].

(14)
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Equations (14) show that, as a -+ co,f"(O)a- 3 /4 -- 0.739 50 and 0'(0)a-'/4 - -0.59509.
These asymptotic values are also shown in Figs. la and lb (by the broken lines) and we can
see that in each case the solution approaches this asymptotic value as a - co, though the
rate of approach becomes slower the larger the value of B. This is to be expected, as we have
from above, that if # is O(a'/4), curvature effects become important at leading order, and the
nature of the solution changes. This is the case we discuss next.

4. The free-convection limit

We have seen above that for the curvature effects to be important at leading order when
a > 1, P must be of O(a'/4). So if we put P = ,Co' /4 and then let a - o, equations (10)
become

F"'(1 + 2) + 2 0BF" + FF" - F'2 + 0 = 0, (15a)

0"(1 + 2) + 200' + FO' - F' = 0, (15b)

with boundary conditions (11) becoming

F(0) = F'(0) = 0 0(0) = 1;

(16)
F'-0, 0 0 as oo.

With this choice of scaling for 0, the non-dimensionalisation given by (5) becomes indepen-
dent of the free-stream, and depends only on the applied temperature difference. Hence we
can regard equations (15) and (16) as the free-convection limit of the mixed-convection
problem defined by equations (6) and (7). Equations governing the free-convection similarity
solution on a vertical circular cylinder have previously been given by Millsaps and
Pohlhausen, [10]. The equations derived in [10] are somewhat different to equations (15),
(they used a different transformation of variables) and no detailed discussion of their
solution was given.

Equations (15) were solved numerically for increasing value of 0o (with 0o = 0, we obtain
equations (13) for which we have already obtained a solution). Graphs of (d2f/d t 2)0 =
ca3/4F"(0) and (d/d/1)o = 1/40'(0) plotted against Bo are shown in Figs. (2a) and (2b)
respectively. From these figures we can see that both F"(0) and - 0'(0) increase as P is
increased. The solution develops a pronounced double structure for the larger values of 0.
This can be seen from Figs. (2c) and (2d) where graphs of F'(C) and 0(C) for go = 1, 5, 10
are shown. For Bo = 5 and more obviously for 0 = 10, both F' and 0 have a steep gradient
near the wall ( small) followed by a long "tail" region before the outer boundary conditions
are finally reached.

We now go on to consider the solution for /Bo large. To do this we first put Y = +
1/(2,3o) with equations (15) becoming

2, 0oyF"' + 2, 0F" + FF" - F'2 + 0 = 0, (17a)

2#oyO" + 2o0' + FO' - F' = 0, (17b)
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with boundary conditions

F = F' = 0, 0 = 1 on y 2;'

(18)
F' 0, 0 -O as y -oo

(primes now denote differentiation with respect to y).
We look for a transformation of equations (17) which will be valid when i > 1. To do

this we put F = a, 0 = bh and Y = cy, where a, b and c are functions of Po to be
determined. A balancing of terms in the momentum equation (17a) then gives a = Pfo and
b = 02c2. Also equation (17b) becomes, for small Y, Yh" + h' - so that h 1- AO log Y +
B0, (for constants AO and BO) which in turn implies that 0 - b[Ao log Y + B0] for Y 1.
The boundary condition on y = 1/(2,3o), i.e. Y = c/(2o0), then requires 1 = b[Ao log
{c/(2#B0)} + B0]. Hence we need to choose b so that b = - 1/log (c/2flo) (taking the negative
sign, since c/flo 1); c is then determined from c2 = [fl0 log (2lo/c]- '.

All this suggests the transformation

h( Y)F = #,iO(Y), = l ( ) and Y = 2 5y, (19)
log (1/6)

with equation (17) becoming

2Yr"' + 2" + )t" - '/2 + h = 0, (20a)

2Yh" + 2h' + h' - 'h = 0, (20b)

Subject to the boundary conditions

q = ' = 0, h = log(1/6) on Y = 5;

(21)
S'-*0, h- 0 as Y -+ c

(primes now denote differentiation with respect to Y).
5 is related to ,30 via

52 log (1/5) = 1/4#4, (22)

so that = (2/2flo)-1 (log lo)
-
1/2 (1 + .... The transformation (19) is similar in

many respects to that used by Kuiken [7] to describe the axisymmetric free-convection
boundary-layer flow at large distances along an isothermal circular cylinder. As noted
above for Y < 1, the solution for h is h = A log Y + Bo + . . . . So to satisfy the inner
boundary condition on h, we must take A = -1. Then this boundary condition is
satisfied to O(1/log (1/5), which in turn means we require an expansion for p and h in
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f'(O)

0 10

Fig. 2a. Graphs of f(O) against ho for the free-convection limit (asymptotic series (30b) is shown by the broken
line).

So
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e' (o)
-2

-3

-4

Fig. 2b. Graphs of 8'(0) against P0 for the free-convection limit (asymptotic series (30a) is shown by the broken
line).

the form

1 1
= 0 + o ( 1 + (log (/g)) 2 2 + .- .log (1/6) (log (1/6))2

1 1
h = h + h, + h2 + ....

log (1/6) (log (1/6))2

(23)

So

^^
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Fig. 2c. Velocity profilesfS for fi = 1, 5 and 10 for the free-convection limit.
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Fig. 2d. Temperature profiles 00 for 10 = 1, 5 and 10 for the free-convection limit.

The equations at leading order are

2Y4> + 2' + 0 - 042 + ho = 0,

2Yh + 2h + h - ho = 0,

with boundary conditions

ho -+ O, o -- 0 as Y -oo,

(24)

(25)
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and for small Y

ho - -log Y + B + .... (26)

For 40 we then have, approximately, for Y 1, 2Y4O' + 2' - log Y - Bo so that
0 = C + Do log Y + O(Y log Y). We need a solution which is not singular at Y = 0 so

Do = 0 and

0o = C0Y +.... (27)

From (27) the inner boundary condition on is then satisfied to O(s), which is correct to
an order of magnitude much smaller than for the series expansion (23).

We then have to find a solution to equations (24) which satisfies (26) and (27) for Y 1
and (25) as Y - oo. This has to be done numerically, and because of the singularity at
Y = 0, we have to start the integration at a small but non-zero value of Y, using expansions
for 0 and h0, valid for small Y, namely

o = Co + Y2 log Y + (2C2- 2Bo - 5)Y 2 + ... ,
(28)

h = - log Y + Bo0 - CoYlog Y + (BoCo + 3C0) Y + ....

Using (28), starting the integration at Y = 0.01, and applying the outer boundary condition
at Y = 150, we found that Bo = - 0.6602, Co = 0.9992. Other initial and final values for
Y were tried, and these we found to give the same values for Bo and Co to the accuracy
quoted. Now at O(l/log (1/r)), we will have, for Y 1,

h, - A, log Y + B., ) - D, log Y + C,, (29)

and satisfying the boundary condition on Y = gives A = B0, D = Co; and the
expansions can then be developed. On solving the linear equations for 4, and h, using the
same method as for 40 and h (i.e., by starting the solution off for small Y by a series
expansion) we found that C, = 1.7398 and B1 = 0.7551. Using (19), (26), (27) and (29), we
find that, for P0 > 1,

M - 2f l Bo
(do )= log (1/a) log (1/B) ) (30a)

(d(' =0 log (1/6) log (a)

To use the asymptotic expressions (30) for (d2F/dC2)C=0 and (d0/d()C=0 we first need to find
3 in terms of io. This was done by using Newton's method to solve expressions (22)
numerically for a range of values of BO. These values of 3 could then be used in (30) and
graphs of (d2F/d2)C=0 and (d0/dC)C=0 drawn using these asymptotic expressions. These are
also shown in Figs. (2a) and (2b) respectively (by the broken lines). We can see that they are
in good agreement with the values obtained by solving equations (15) numerically.
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5. Opposing case, a < 0

Consider first the case when 0 = 0, giving equations (8). The numerical solutions of these
equations reveal that, as shown by [2], there is a value of a, ab (say), which depends on the
value of /f, such that there are two branches of solution for b < c < 0 and no solution for
a < a. However, we find that the lower branch of solutions can be continued past the point
where 0'(0) = 0, which was where the solutions given by [2] ended, and that this lower
branch terminates as - 0- . Graphs off"(0) and 0'(0) for this case are shown in Figs. (3a)
and (3b) respectively. From these figures we see thatf"(0) approaches a finite limit while
0'(0) - o as a - 0-.

Typical velocity and temperature profiles are shown in Figs. (3c) and (3d) respectively.
These together with Fig. (3a) show that, for the lower branch of solutions, as Ial is decreased
the region of reversed flow which initially appears next to the wall is moved away from the
wall to a position within the boundary layer, with the velocity near the wall, and at large
distances being positive. Graphs off"(0) and 0'(0) for = 1 and /B = 5 plotted against a
are also shown in Figs. (3a) and (3b) respectively. From these figures we can see that the
effect of increasing the curvature parameter /B is to increase f"(0) on the upper branch of
solutions, and to decreasef"(0) on the lower branch, with the value of 0'(0) being increased
for a given value of a. By /B = I the region of forward flow next to the wall has disappeared
and there is now no second point of flow reversal.

To obtain a fuller understanding of how the curvature parameter affects the solution for
a < 0, we computed as, the value of a at which the skin friction vanished, i.e. at a = a,,
f"(0) = 0. To do this we solved equations (6) numerically with now the extra boundary
condition thatf"(0) = 0, and using the value of a as the undetermined parameter in the
system. The value of this parameter and that of 0'(0) were then adjusted iteratively until the
outer boundary conditions (7) were satisfied to sufficient accuracy. In this way, we could start
at P = 0 where good estimates had already been obtained for %a and 0'(0) and compute a,
(and 0'(0)) for increasing values of fl. A graph of a, thus obtained is shown in Fig. (3e). This
figure shows that Ia I increases as # increases.

We also calculated the bifurcation point, ab, of the dual solutions. To do this we put
= - , where 0 < e < 1, and, as in [8, 9], we expandf and 0 as

f = f0 + l /2fi + f 2 + .. ,

0 = 00 + ge/20 + 02 + .... 31)

f0 , 00 satisfy equations (6) and boundary conditions (7) with a = ab. At O(e1/2),J,, 0, satisfy
the homogeneous problem

(1 + 2i 1)f,"' + 2f," + f0of" - 2o'f' + fo"fi + bo1 = 0,

(32)
(1 + 2)0O' + 2 + fo00 + f -fo', - f'0o = , (32)

subject to the boundary conditions

fl(o) = fi'(O) = 01(0) = f'(o0) = 01(00) = 0.

83

(33)
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f'(o)

Fig. 3a. Graphs off (0) for = 0, I and 5 for the opposing case, a < 0.
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Fig. 3b. Graphs of 8'(0) for P = 0, I and 5 for the opposing case, a < 0. The behaviour as a - 0- given by (46)
is shown by the broken line.
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Fig. 3c. Velocity profilesf' for a = - 1.0, = -0.5 and a = -0.05 with 0 = 0.
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Fig. 3d. Temperature profiles fo
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*r a = - 1.0, a = -0.5 and a = -0.05 with Bf = 0.

Equations (32) were solved by applying the extra boundary condition thatfl,(0) = 1 to force
a non-trivial solution and using the value of ab as an extra parameter, in a way similar to the
determination of a described above. It was the solution of this homogeneous problem that
determined ab. The general solution of this problem will then befl = Kcf, 0, = Kg where f,
0 is that solution which has f"(0) = 1. The equations for the terms of O(E) are then

(1 + 2)f 2" + 2fif2" + of2 - 2fo'f 2' + ff 2 + orb 02 = K2(f,2 _ ff") + 0o, (34a)

(1 + 2)9 + 2;2 + fo 02 + f 2A8 - fo 2 -. f;2 0 = K2 (f' - ), (34b)

with boundary conditions

f2 (o) = f 2'() = 02(0) = f'(co) = 02 (00) = 0.

85
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2 4 6 8

Fig. 3e. Graphs of a, (the value of a wheref"(0) = 0) and ab (the value of a at the bifurcation of solutions) plotted

against P.

To solve equations (34) we construct two particular integrals, one (fa, a) which has
f"(O) = O'(0) = 0 and satisfies equations (34) with K = 1 and the term 00 omitted from
equation (34a), and a second, (fb, Ob) which has fb"(0) = O'(0) = 0 with K = 0. We
also construct two complementary functions (fc, Oc) and (fd, 0d) which have f"(0) = 1,
G0(0) = 0 and fdj(0) = O, Od(0) = 1. The full solution is then

f 2 = K a + + Af, + fd,

(36)
02 = K2 a + 0 b + AOc + 0 d, (36)

for some constants A and . Now, as q - oo, f Bil 2 and 0,i Ai? (i = a, b, c, d), so that
to satisfy the outer boundary conditions we must choose l and # so that

K2Aa + Ab + AAc + pAd = 0, (37a)

K2Ba + Bb + AB c + pBd = 0. (37b)

But since there is a non-trivial solution to the equation at O(e'&2) there must be non-zero
values of A and j such that )AC + /Ad = 0, ABc + pBd = 0, i.e., AcBd - AdBC = 0. Using
this, we can see that equations (37a) and (37b) are compatible only if

K2 = BbAc - AbBc (38)

A.B c - BaAc'

Equation (38) has two solutions + Ko (say), and hence close to the bifurcation point cab,

f"(O) = fo"(0) ± Ko(OXb - ) 1/2 + . .

0'(0) = 0(0) ± Kc0i(0)(ob - X)1/2 + ... .

0

(39)
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(39) gives a square-root behaviour at the bifurcation point, with the + sign giving the start
of the upper branch and the - sign the lower branch.

The values of ctb were determined (as described above) for a range of /f, the results being
shown in Fig. (3e). From this figure we can see that Ilbl is always greater than Ial, showing that
the general shape of the curves for f"(0) will be essentially the same as those presented for
/3 = 0, 1 and 5. Also for the larger values of fB, the curves of a, and ab appear to the parallel.

Next consider the limit - O-. The numerical solutions of equations (6) show that the
form off' changes only slightly as a - 0- whereas 0 changes rapidly. So to obtain the form
of the solution as - 0- , f and are left unsealed and then to retain the buoyancy force
term in equation (6a), we put 0 = Icl-'(,q), and look for a solution as a O- . Equations
(6) become

(1 + 2)f'" + 2f" + ff" + 1 -_ f'2 -_ = 0,

(1 + 2f1)' + 2h' + f - f = o, (40)

with boundary conditions (7) becoming

f(0) = f'(0) = 0, h(0) = lca;

f'- 1, -o as I-, oo (41)

(primes again denote differentiation with respect to ?1).
Boundary conditions (41) suggest an expansion of the form

f = fo + Ilf + 12f + ... ,

fi= ho + l + l 2 h2 + ... (42)

The leading-order equations are

(1 + 2?i)fo"' + 2fo" + ffofo" + 1 - fo2 - ho = 0,

(1 + 2)0 + 2O + foo - f0 '/io = 0, (43)

with boundary conditions

fo (O) = fo'(O) = io(O) = 0;

fo' -*1, o-O as tl-, oo. (44)

The equations for the higher-order terms in expansion (42) are all linear and can easily be
solved once the solution of (43) is known. The solution with P = 0 gives

f"(0) = 0.57700 - 0.67360 Ia + ... , (45)

0'(0) = , [0.49911 - 0.51130 jal + ... ] (46)
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for Ial < 1. Values of 0'(0) as calculated from (46) are also shown in Figure (3b) (by the broken
line) and are seen to be in excellent agreement with the numerical solutions of equations (6).

6. Large curvature

In this section we look for a solution of equations (6) valid when the curvature parameter
f is large with the buoyancy parameter a of 0(1). To do this we first define a new independent
variable y by y = 2i/ + /-' and on putting f = f equations (6) then become

flf" + ff + (ff" + 1 - f' 2) + 0 = 0, (47a)

pio + 0o' + (fO' -f'O) = 0, (47b)

with the boundary conditions

f = f' = 0, 0 = 1 on y = f-';

f'--l1, 0 0 as - oo (48)

(primes now denote differentiation with respect to 5).
We now look for a transformation of equations (47) which will hold when f > 1. Since

equation (47b) shows that 0 is of O(log y) for y small, and then a balancing of the terms in
equation (47a) together with the requirement that I' - 1 as y - oo, leads us to the
transformation

f = fG(z), 0 = H(z), z = /l. (49)log 

Equations (47) become

TG" + G" + (GG" + - G' 2) + -l H = 0,
4 log 

TH" + H' + (GH' - G'H) = 0

(primes denote differentiation with respect to ).
With boundary conditions (48) now to be applied on T = 1 /2. We look for a solution by

expanding G and H in the form

G = Go + +( + ....
log P (log +)2

H1 HI
H = H o+ HI + (o)2 (51)

log (log #)2
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At leading order, we obtain the equations

rG"' + G + (GoG + 1 - G 2) = 0, (52)

rHo + H + (HOGo - HGo) = 0. (53)

The solution of equation (52) which satisfies Go - 1 as Tz oo and is not singular at
= 0 is just

Go = T. (54)

Using this equation, (53) becomes

HO' + r ( + ) Ho , -H = 0. (55)

We need a solution which has H - 0 as - oo. The solution of equation (55) can be
expressed in terms of confluent hypergeometric functions, Slater [5], as

H0 = Ao e-/4U(2; 1; T/4) (56)

for some constant A. Using results given in [5] we have, for zT 1, that H0o 
-A[log z - 2 log 2 + y + 1 + ... ] where y = 0.577 216 is Euler's constant. This gives

0 = - A°(- l2ogiP + (y + 1 - 2log2) + ... ) (57)
log (

on z = 1/# 2, so that we must choose Ao = to satisfy 0 = 1 at leading order. Then

H0 = e-/ 2U(2; 1; /4). (58)

The equation for G. is then

rG(" + (1 + /4)G' - =- - e-'/4U(2; 1; T/4), (59)

and we need a solution of equation (59) which is not exponentially large at o. The solution
of equation (59) can also be written in terms of confluent hypergeometric functions as G' =
e-'/4{(/2)U(2; 1; /4) + B. U(3; 1; T/4)}. Since, from [5], U(3; 1; T/4) - -(log z +
(y + -2 log 2) + ... )forT < 1, it follows that on T = 1// 2,

G' = 1 + ( + B.) + O(1/log f),

and this gives the constant B. = -(1 + ) and hence

G -= e- '/4 {2 (2; 1; T/4 )- (1 + )U(3; 1; /4)}. (60)
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We are now in a position to estimate the skin friction (d2f/d/2)O and heat transfer (dO/d/1)O
for > 1. From (60), we have

G - log + (y + - 2 log 2) + + ... for z 1.

Then since G; B2 log z + ... for some constant B2, we have, on satisfying the inner
boundary condition on z = 1/B2 that

B2 = (Y + 3 - 2 log 2) + -8

Now from (49), (d2f/d1
2)=o = (2/fl) (d2G/dT 2)T=,I,, and hence, we obtain

(d_ = B {I +I 3(y + 3 - 2 log 2) + a/4 (61)
d~j2 log/~ log 6

for/ > 1.
A similar argument applies for Hi which, using (58) will be of the form HI ~ -(y +

1 -2 log 2) log - + ... forT < 1, and hence

(d = - ( (y + 1 -2 log 2) (62)
d?/ =o log B log ,

for > 1.
Graphs of (d2f/d 2),,=0 and (dO/di),,=0 obtained by solving equations (6) for the case = 0

are shown plotted against in Figs. (4a) and (4b) respectively. Also shown on these graphs
(by the broken lines) are the values of (d2f/df 2)O and (dO/di1)o as calculated from the

6

4

f(o)

2

o
0 4 0 12 16

B

Fig. 4a. Graph off"(0) plotted against with a = 0. The large-curvature solution (61) is shown by the broken
line.
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-2

e'(O)

-4

B

Fig. 4b. Graph of 0'(0) plotted against # with a = 0. The large-curvature solution (62) is shown by the broken
line.

asymptotic expressions (61) and (62) again with a = 0. The figures clearly show the good
agreement between these asymptotic expressions and the numerically determined values.
Finally we notice that from (61), the value of a, ac, where the skin friction goes to zero is of
O(log fB) for B > 1. (We cannot use (61) as it stands to estimate a, more precisely since the
next term in the series will involve an expession of the form a2/(log ]B) 2 which will contribute
to the estimate for a, at leading order.) This is very slow increase in a, for P large is in line
with the numerically determined values shown in Fig. (3e).
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